Site icon Casa da Matemática

Teorema de Pitágoras: teoria e prática

Teorema de Pitágoras: teoria e prática

Importância em aprender o Teorema de Pitágoras

O Teorema de Pitágoras é uma das relações mais conhecidas na geometria. Qualquer estudante do ensino fundamental ou médio já ouviu falar de catetos, hipotenusas e sua relação com o Teorema de Pitágoras.

Assim, é fundamental conhecermos bem esse teorema bastante útil.

Relação entre triângulo e quadrados

O teorema de Pitágoras é decorrente de uma relação entre os lados de um triângulo retângulo e as áreas dos quadrados.
Antes de aprofundarmos no assunto, temos alguns conceitos sobre essas figuras geométricas:

1 – Triângulo retângulo: é um triângulo que possui um ângulo de 90º.

2 – Quadrado: quadrilátero que possui todos os lados iguais e todos os 4 ângulos com 90º.

Assim, ao juntarmos três quadrados, teremos o espaço relativo a um triângulo retângulo entre eles:

Pitágoras relacionou então a área formada pelos três quadrados com os lados do triângulo, onde o quadrado da área do quadrilátero oposto ao ângulo de 90º é igual a soma dos quadrados das outras duas áreas:

O triângulo de Pitágoras

Os lados do trîangulo retângulo possuem as seguintes denominações:
Hipotenusa: lado oposto ao ângulo de 90º.
Catetos: demais lados.

O Teorema de Pitágoras

O teorema diz que o quadrado da hipotenusa é igual à soma dos quadrados dos catetos.

Prática 1

Calcule o valor de X na hipotenusa do triângulo abaixo.

Resolução
O valor de x está representado pela hipotenusa. E um cateto possui o valor 8 e o outro cateto possui o valor 6.
Aplicando o teorema:

Prática 2

Calcule o valor de x no cateto do triângulo abaixo.

Resolução
O valor de x está representado por um dos catetos. Temos a hipotenusa que é 26 e o outro cateto que é 24.

Conclusão

O teorema estuado é aplicado na resoluções de questões envolvendo não apenas matemática, mas também na física e outras disciplinas. Embora seja simples de entender, sua utilidade é basante ampla e serve de base para muitos outros teoremas.

Bons estudos e sucesso.

Que tal aprender um pouco mais de matemática e saber como calcular o vértice de uma parábola?

Referências
Wikipedia

Exit mobile version